Deep learning technology is uniquely suited to analyse neurophysiological signals such as the electroencephalogram (EEG) and local field potentials (LFP) and promises to outperform traditional machine-learning based classification and feature extraction algorithms. Furthermore, novel cognitive computing platforms such as IBM’s recently introduced neuromorphic TrueNorth chip allow for deploying deep learning techniques in an ultra-low power environment with a minimum device footprint. Merging deep learning and TrueNorth technologies for real-time analysis of brain-activity data at the point of sensing will create the next generation of wearables at the intersection of neurobionics and artificial intelligence.

IBM PDF document

Original article

Nurse, E., Mashford, B.S., Yepes, A.J., Kiral-Kornek, I., Karoly, P.J., Harrer, S. and Freestone, D.R.
ACM International Conference on Computing Frontiers (pp. 259-266)

 

Deep learning technology is uniquely suited to analyse neurophysiological signals such as the electroencephalogram (EEG) and local field potentials (LFP) and promises to outperform traditional machine-learning based classification and feature extraction algorithms.